Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (155)2020 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-31984953

RESUMO

The dimeric transcription factor NF-κB regulates many cellular response pathways, including inflammatory pathways by inducing the expression of various cytokines and chemokines. NF-κB is constitutively expressed and is sequestered in the cytosol by the inhibitory protein nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha (IκBα). Activation of NF-κB requires the degradation of IκBα, which then exposes a nuclear localization signal on NF-κB and promotes its trafficking to the nucleus. Once in the nucleus, NF-κB binds to the promotor region of NF-κB target genes such as interleukin 6 (IL-6) and IL-23, to promote their expression. The activation of NF-κB occurs independently of transcription or translation. Therefore, the activation state of NF-κB must be measured either by quantifying NF-κB specifically in the nucleus, or by quantifying expression of NF-κB target genes. In this protocol, cells stably transfected with an NF-κB::luciferase reporter construct are assayed for NF-κB activation using in vitro tissue culture techniques. These cells are infected with Salmonella Typhimurium to activate NF-κB, which traffics to the nucleus and binds to κB sites in the promoter region of luciferase, inducing its expression. Cells are lysed and analyzed with the luciferase assay system. The amount of luciferase produced by the cells correlates with the intensity of the luminescence signal, which is detected by a plate reader. The luminescence signal generated by this procedure provides a quick and highly sensitive method by which to assess NF-κB activation under a range of conditions. This protocol also utilizes quantitative reverse transcription PCR (RT-qPCR) to detect relative mRNA levels that are indicative of gene expression.


Assuntos
Regulação da Expressão Gênica , Luciferases/metabolismo , NF-kappa B/metabolismo , Infecções por Salmonella/genética , Salmonella typhimurium/fisiologia , Técnicas de Cultura de Tecidos , Ativação Enzimática , Células HeLa , Humanos , Luciferases/genética , Luminescência , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
2.
Infect Immun ; 87(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31109951

RESUMO

Nucleotide-binding oligomerization domain 1 (NOD1) is an intracellular pattern recognition receptor (PRR) responsible for sensing bacterial peptidoglycan fragments. Stimulation of NOD1 leads to a robust innate immune response via activation of the major transcription factor NF-κB. In addition to peptidoglycan sensing, NOD1 and the closely related PRR NOD2 have been linked to inflammation by responding to the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR). Here we show that differential ER stress induction renders cells more susceptible to Salmonella enterica serovar Typhimurium infection in a NOD1-dependent manner, measured by increased NF-κB activation and cytokine expression. In HeLa57A cells stably transfected with an NF-κB::luciferase reporter, we show that cells undergoing ER stress induced by thapsigargin display a significant increase in NF-κB activation in response to NOD1 stimulation by C12-iE-DAP (acylated derivative of the iE-DAP dipeptide [gamma-d-glutamyl-meso-diaminopimelic acid]) and the S Typhimurium effector protein SopE. Tunicamycin-induced ER stress had no effect on NOD1-stimulated NF-κB activation. We further show that the mouse intestinal epithelial cell line MODE-K and RAW264.7 macrophages are more responsive to Salmonella infection when treated with thapsigargin but not with tunicamycin. These profound differences between thapsigargin- and tunicamycin-treated cells upon inflammation suggest that different components downstream of the UPR contribute to NOD1 activation. We found that the NOD1-induced inflammatory response is dependent on protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) activation in conjunction with stimulation of the inositol triphosphate receptor (IP3R). Together, these results suggest that differential UPR activation makes cells more responsive to bacterial infections in a NOD1-dependent manner.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Proteína Adaptadora de Sinalização NOD1/fisiologia , Animais , Células HeLa , Humanos , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Camundongos , NF-kappa B/fisiologia , Células RAW 264.7 , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas , eIF-2 Quinase/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...